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About Eugene

 15+ years of experience building mission-critical, high-
availability systems infrastructure

 12+ years of Java work

 Open-source evangelist
• Official adoption of open-source / Linux at Wal-Mart Stores

• State-of-the-art tech for main-line of business roll-outs

 Engaged by the largest companies in the world
• Retail

• Finance

• Oil industry



What You Will Learn...

 How to develop complex apps within very tight deadlines

 Formalize integration around a resource-oriented model

 Develop event-driven apps based on existing production 
tech and services

 Turn SOA-based systems into callbacks as an evolution of 
the provider/consumer model

 Define application processing in terms of compositions 
and asynchronous sequences of resource requests



So... What is the Problem?

 Very tight deadlines
• Typical 12-month project rolled out in 90 days

 Development team built at the same time as application 
design work

 No history of developing Web applications

 Rigid IT infrastructure and policies
• SOX and other compliance issues

• IT guys used to rule the world

 Integration with financial and other legacy systems is a 
must



Advantages
 Very tight deadlines!
• We gotta do what we gotta do...

 Dev team grows at the same time as design work 
proceeds
• Technology adoption driven by team member selection and viceversa

 Very few legacy issues to deal with in Web applications
• Adoption of best-of-breed technology from open-source community

 IT doesn’t do Web systems
• Technology adoption policy evolves along with design and development

 No need to reinvent the wheel for existing systems
• Financial, CRM model, etc.



Integration Through Services

SOA = Services-Oriented Architecture

Collection of services that communicate with one 
another
• No dependencies on other services

• Self-contained

Messaging:  mechanism for communication between 
two or more services

Real-time, asynchronous, synchronous
• May occur over different transports

 HTTP, FTP, JMS, RMI, CORBA, etc.



SOA Limitations

Not all systems can be mapped as services

Workflow issues

Development team coordination

Programmer skill levels
• Do your programmers grok SOA?

System coupling
• System dependencies

• Organizational dependencies
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Technologies Deployed

Best of Breed

Mule ESB - the backbone

Crowd Single Sign-on 

GWT for front end AJAXy stuff

Wicket for Web applications

Day Communiqué / CRX for CMS

All open-source development tools

Java 5 and Java 6



How Well Did This Work?



What’s Next?

 Integration of third-party systems
• 2007 - two

• 2008 - ten or more

 International sites

Real-time device data processing

Multiple data sources
• Databases

• Financial systems

• CRM

Support for millions of devices “in the wild”



Shift Toward Consuming Resources

 Conscious decision to blur the distinction between 
“services” and “data sources”

 Everything is a resource
• SOAP, REST, JMS, files

• Web apps back-end

• Computational data

 Resources are available through a well-defined 
protocol

 Resources are always available through a common 
transport to simplify development and deployment



What is Resource-Oriented Computing?

 All components of a system are viewed as resources to be 
consumed synchronously or asynchronously

 There is no distinction between “data”, “objects” or 
“services”

 There is no dependency on a programming language or 
framework
• Mix and match is the reason why you want to move toward ROC

 Resources are located through URIs

 Software identifies resources through logical rather than 
physical mappings



What is Resource-Oriented Computing?

 Programs map logical and physical locations through 
identifiers in traditional computing models
• String  resource = “I am some useful, non-trivial text.”;

 ROC defines resources through verbs and logical 
identifiers
• Yes, it sounds like REST

 An identifier ALWAYS returns the CURRENT 
representation of a resource

 Each logical identifier is resolved for every request
• Resource implementations can change dynamically, resource consumers 

need not care about where or how a resource is implemented



Java vs. REST vs. ROC
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Defining Resources

Resources don’t exist in the context of an application 
until they are requested

Resources lack typing
• Typing is relevant only to the consumer

Endpoint URIs may convert types for individual data 
elements or complex data structures

URIs may encode the desired operation to perform on 
the data
• protocol://servername/subsystem/operation/resource



Resource Abstractions

 The promotions resources may be generated...
• cron periodically

• On-demand

• Aggregated

 The promotions system of record is independent of the 
ROC platform or the consumer

 The “verb” here is “promotions”, when combined with a 
GET

 There may be two or more aggregators that produce the 
resource

http://server/mycompany/promotions/product_catalogue



Resource Abstractions
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ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel 

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy:  find the best components and 

integrate them



ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel 

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy:  find the best components and 

integrate them

VENDOR LOCK-IN!!!!



ROC Architecture

 The systems are built around a backbone that provides 
resources via URI

 The backbone acts as an resource container or as a 
conduit between resources or resources and consumers

 URI mapping is done by the backbone

 Resource containers can exist in the same memory space 
as the backbone or in a separate system

 Resource providers may be written in any programming 
language

 Resource providers are stateless



ROC Architecture

 Modularity is attained through logical separation of 
resources
• Resource providers as .jar, .war, or other entity

• Localized backbones

• Localized resource providers

 Logical separation may obey organizational policy, 
technology policy, or both

 Implementation can be done with off-the-shelf 
components in any combination that makes sense, as 
long as the backbone is protocol-, language-, and 
vendor-independent



ROC Architecture
 Backbone:  Mule ESB

• Provides full independence from the kind of crap that vendors like to create 
lock-in for

• Open-source

• Workflow, transactions, transformations, logging, routing

 Resource container:  Mule ESB
• UMOs (service objects) implement business logic independently of protocol 

or data formats by design

• Transactional, app server and workflow logic built-in

• UMOs are just POJOs

 Synchronization
• In-memory endpoints



ROC Architecture

 Original architecture had lots of best-of-breed software
• Tomcat

• Dedicated application/service providers

• Web servers

 ROC architecture only has two basic building blocks
• Mule acting as a resource service provider (i.e. Mule is the application 

container)

• UMOs as computationally active entities

 Existing and off-the-shelf systems plug into the 
architecture through SOAP, REST, JMS, etc.

 Mule allows us to define our own protocols, if necessary!



ROC Architecture
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ROC Implementation

 Dedicated protocols
• vm://mycompany/subsystem/resource_name

• http://mycompany/subsystem/resource_name

 Easy to extend to handle ROC:

 Easy to implement!

verb:protocol://mycompany:port/organization/subsystem/resource_name



ROC Implementation
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ROC Implementation

 Resource providers
• SOAP API to CRM

• JMS API to transactional pieces

• Download app repository

• OpenLaszlo dynamic rich Internet application provider

 Interfaces to existing systems
• Epsilon direct mail interfaces

• FTP, sftp, other data transfer

 Computational resources for ad hoc new functionality
• MapReducers (2008, 2009)



ROC Implementation
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ROC Roll-out

Quick, turnkey roll-out

The fewer systems to maintain, the better

Use Java or JVM-hosted languages wherever 
possible

 Integrate with third-party or non-Java systems 
over standard or custom protocols with as quick 
a turnaround as possible

EASY TO SCALE QUICKLY!!!!



ROC Roll-out
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Conclusions
 Complex systems are easier to code and maintain if implemented as 

small blocks

 Small blocks can be mapped as resources that can be consumed in 
a stateless fashion

 Applications can be built as an aggregation of resources

 ROC techniques improve time-to-market

 ROC techniques combined with open-source offerings can reduce 
deployment costs by 70%, and ongoing maintenance by 30-40%

 Complex systems can be integrated as a combination of best-of-
breed software whether commercial, open-source, or homebrew

 ROC is the logical evolution of applied SOA



Q&A
Thanks for coming!
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This presentation is at:
http://eugeneciurana.com/MuleCon2008/ROC.pdf


