
Son of SOA
Resource-Oriented Computing
Event-Driven Architecture

Eugene Ciurana
Director, Systems Infrastructure
LeapFrog Enterprises, Inc.

eugenex@leapfrog.com
pr3d4t0r @ irc://irc.freenode.net ##java, #esb, #awk, #security

About Eugene

 15+ years of experience building mission-critical, high-
availability systems infrastructure

 12+ years of Java work

 Open-source evangelist
• Official adoption of open-source / Linux at Wal-Mart Stores

• State-of-the-art tech for main-line of business roll-outs

 Engaged by the largest companies in the world
• Retail

• Finance

• Oil industry

What You Will Learn...

 How to develop complex apps within very tight deadlines

 Formalize integration around a resource-oriented model

 Develop event-driven apps based on existing production
tech and services

 Turn SOA-based systems into callbacks as an evolution of
the provider/consumer model

 Define application processing in terms of compositions
and asynchronous sequences of resource requests

So... What is the Problem?

 Very tight deadlines
• Typical 12-month project rolled out in 90 days

 Development team built at the same time as application
design work

 No history of developing Web applications

 Rigid IT infrastructure and policies
• SOX and other compliance issues

• IT guys used to rule the world

 Integration with financial and other legacy systems is a
must

Advantages
 Very tight deadlines!
• We gotta do what we gotta do...

 Dev team grows at the same time as design work
proceeds
• Technology adoption driven by team member selection and viceversa

 Very few legacy issues to deal with in Web applications
• Adoption of best-of-breed technology from open-source community

 IT doesn’t do Web systems
• Technology adoption policy evolves along with design and development

 No need to reinvent the wheel for existing systems
• Financial, CRM model, etc.

Integration Through Services

SOA = Services-Oriented Architecture

Collection of services that communicate with one
another
• No dependencies on other services

• Self-contained

Messaging: mechanism for communication between
two or more services

Real-time, asynchronous, synchronous
• May occur over different transports

 HTTP, FTP, JMS, RMI, CORBA, etc.

SOA Limitations

Not all systems can be mapped as services

Workflow issues

Development team coordination

Programmer skill levels
• Do your programmers grok SOA?

System coupling
• System dependencies

• Organizational dependencies

Environment - First Iteration

Firewall

External

Device

PC

application

Web

browser thesite.com
http

Cart,

session

data

Dedicated Store
Java 6, Wicket, Tomcat,

etc.

SOAP REST
SOAP

REST

SOAP REST

Mule ESB

SOAP, REST, JMS, MQ, BPEL, JDBC, caching, in-memory

SOAP REST

REST

Microsite

Java 6

Wicket

CMS

feed

http
Internet

SOAP

REST

SOAP

REST

ERP

SOAP

REST

CMS Content
Repository

JDBC

Customer

Master

SOAP

REST

Crowd Single Sign-On

Active
Directory
(domain)

Custom

Merchandizin
g

Tools

SOAP

REST

REST

CRM

Mule ESB

Technologies Deployed

Best of Breed

Mule ESB - the backbone

Crowd Single Sign-on

GWT for front end AJAXy stuff

Wicket for Web applications

Day Communiqué / CRX for CMS

All open-source development tools

Java 5 and Java 6

How Well Did This Work?

What’s Next?

 Integration of third-party systems
• 2007 - two

• 2008 - ten or more

 International sites

Real-time device data processing

Multiple data sources
• Databases

• Financial systems

• CRM

Support for millions of devices “in the wild”

Shift Toward Consuming Resources

 Conscious decision to blur the distinction between
“services” and “data sources”

 Everything is a resource
• SOAP, REST, JMS, files

• Web apps back-end

• Computational data

 Resources are available through a well-defined
protocol

 Resources are always available through a common
transport to simplify development and deployment

What is Resource-Oriented Computing?

 All components of a system are viewed as resources to be
consumed synchronously or asynchronously

 There is no distinction between “data”, “objects” or
“services”

 There is no dependency on a programming language or
framework
• Mix and match is the reason why you want to move toward ROC

 Resources are located through URIs

 Software identifies resources through logical rather than
physical mappings

What is Resource-Oriented Computing?

 Programs map logical and physical locations through
identifiers in traditional computing models
• String resource = “I am some useful, non-trivial text.”;

 ROC defines resources through verbs and logical
identifiers
• Yes, it sounds like REST

 An identifier ALWAYS returns the CURRENT
representation of a resource

 Each logical identifier is resolved for every request
• Resource implementations can change dynamically, resource consumers

need not care about where or how a resource is implemented

Java vs. REST vs. ROC
Java REST ROC

Identifier

Fetch

Resolve

Compute

Low-level
operation

private int nX; URI URI

out.printf(“nX =
%d\n”, nX);

Method GET
URI

Protocol fetch
+ URI

Compiler,
reflection

DNS + app
server

ROC kernel or
backbone

Java Virtual
Machine

App server Endpoint and
service object

JVM, method,
initializer

HTTP method +
URI

Verb + URI pair

Defining Resources

Resources don’t exist in the context of an application
until they are requested

Resources lack typing
• Typing is relevant only to the consumer

Endpoint URIs may convert types for individual data
elements or complex data structures

URIs may encode the desired operation to perform on
the data
• protocol://servername/subsystem/operation/resource

Resource Abstractions

 The promotions resources may be generated...
• cron periodically

• On-demand

• Aggregated

 The promotions system of record is independent of the
ROC platform or the consumer

 The “verb” here is “promotions”, when combined with a
GET

 There may be two or more aggregators that produce the
resource

http://server/mycompany/promotions/product_catalogue

Resource Abstractions

http://server/mycompany/promotions/product_catalogue

Servlet

Database CMS

METHOD GET

Real-time

Pervasive

Reporting
HTTP Server

ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy: find the best components and

integrate them

ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy: find the best components and

integrate them

VENDOR LOCK-IN!!!!

ROC Architecture

 The systems are built around a backbone that provides
resources via URI

 The backbone acts as an resource container or as a
conduit between resources or resources and consumers

 URI mapping is done by the backbone

 Resource containers can exist in the same memory space
as the backbone or in a separate system

 Resource providers may be written in any programming
language

 Resource providers are stateless

ROC Architecture

 Modularity is attained through logical separation of
resources
• Resource providers as .jar, .war, or other entity

• Localized backbones

• Localized resource providers

 Logical separation may obey organizational policy,
technology policy, or both

 Implementation can be done with off-the-shelf
components in any combination that makes sense, as
long as the backbone is protocol-, language-, and
vendor-independent

ROC Architecture
 Backbone: Mule ESB

• Provides full independence from the kind of crap that vendors like to create
lock-in for

• Open-source

• Workflow, transactions, transformations, logging, routing

 Resource container: Mule ESB
• UMOs (service objects) implement business logic independently of protocol

or data formats by design

• Transactional, app server and workflow logic built-in

• UMOs are just POJOs

 Synchronization
• In-memory endpoints

ROC Architecture

 Original architecture had lots of best-of-breed software
• Tomcat

• Dedicated application/service providers

• Web servers

 ROC architecture only has two basic building blocks
• Mule acting as a resource service provider (i.e. Mule is the application

container)

• UMOs as computationally active entities

 Existing and off-the-shelf systems plug into the
architecture through SOAP, REST, JMS, etc.

 Mule allows us to define our own protocols, if necessary!

ROC Architecture

Internet

Service
Provider

(UPS, FedEx)

Mule ESB

Single Sign-On

Active

Directory

Legacy

Auth

LDAP, SOAP Mainframe / RACF

CRM
Product

Catalogue

Product
Support
Pages

Product
Support
Pages

Product
Support
Pages

HTTP, XMLJDBCSOAP

TCP pass-through

Remedy

Service Object

business logic
Web app

Web
browser

GUI
AppDedicated API

Transformer

Transformer

Transformer

JMS, SOAP, etc.

ROC Implementation

 Dedicated protocols
• vm://mycompany/subsystem/resource_name

• http://mycompany/subsystem/resource_name

 Easy to extend to handle ROC:

 Easy to implement!

verb:protocol://mycompany:port/organization/subsystem/resource_name

ROC Implementation

Mule ESB Resource Service Provider

CRM
Product

Catalogue

JDBCSOAP

Remedy

Service Object

business logic
Web app

Dedicated API JMS, SOAP, etc.

Mule ESB Backbone

JDBCSOAP Dedicated API

Transformer

Transformer

Transformer

JMS, SOAP, etc.

Consumer Consumer Consumer Consumer Consumer

ROC Implementation

 Resource providers
• SOAP API to CRM

• JMS API to transactional pieces

• Download app repository

• OpenLaszlo dynamic rich Internet application provider

 Interfaces to existing systems
• Epsilon direct mail interfaces

• FTP, sftp, other data transfer

 Computational resources for ad hoc new functionality
• MapReducers (2008, 2009)

ROC Implementation

Virtual Servers

(Xen, Zones)

MapReduce

controller

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

reduce(f, l)

MapReduce

reduce(f, l)

bucket

bucket

bucket

bucket

bucket

bucket

T
e
rr

a
c
o

tt
a

Output

Output

assignassign

Mule ESB

assign

assign notify

notify

ROC Roll-out

Quick, turnkey roll-out

The fewer systems to maintain, the better

Use Java or JVM-hosted languages wherever
possible

 Integrate with third-party or non-Java systems
over standard or custom protocols with as quick
a turnaround as possible

EASY TO SCALE QUICKLY!!!!

ROC Roll-out

LoadBalancer

Internet

Application
Server

Tomcat 6

Application
Server

Tomcat 6

Web Services
Proxy

Apache

ESB backbone
Multiple instances of Mule 1.1.5 EE

LoadBalancer

Application
Server

Application
Server

LoadBalancer

Web
Services

Mule

Web
Services

Mule

LoadBalancer

Web
Services

Mule

Web
Services

Mule

LoadBalancer

Conclusions
 Complex systems are easier to code and maintain if implemented as

small blocks

 Small blocks can be mapped as resources that can be consumed in
a stateless fashion

 Applications can be built as an aggregation of resources

 ROC techniques improve time-to-market

 ROC techniques combined with open-source offerings can reduce
deployment costs by 70%, and ongoing maintenance by 30-40%

 Complex systems can be integrated as a combination of best-of-
breed software whether commercial, open-source, or homebrew

 ROC is the logical evolution of applied SOA

Q&A
Thanks for coming!

Eugene Ciurana
Director, Systems Infrastructure
Leap Frog Enterprises, Inc.

eugenex@leapfrog.com
pr3d4t0r @ irc://irc.freenode.net ##java, #esb, #awk, #security

This presentation is at:
http://eugeneciurana.com/MuleCon2008/ROC.pdf

