
Son of SOA
Resource-Oriented Computing
Event-Driven Architecture

Eugene Ciurana
Director, Systems Infrastructure
LeapFrog Enterprises, Inc.

eugenex@leapfrog.com
pr3d4t0r @ irc://irc.freenode.net ##java, #esb, #awk, #security

About Eugene

 15+ years of experience building mission-critical, high-
availability systems infrastructure

 12+ years of Java work

 Open-source evangelist
• Official adoption of open-source / Linux at Wal-Mart Stores

• State-of-the-art tech for main-line of business roll-outs

 Engaged by the largest companies in the world
• Retail

• Finance

• Oil industry

What You Will Learn...

 How to develop complex apps within very tight deadlines

 Formalize integration around a resource-oriented model

 Develop event-driven apps based on existing production
tech and services

 Turn SOA-based systems into callbacks as an evolution of
the provider/consumer model

 Define application processing in terms of compositions
and asynchronous sequences of resource requests

So... What is the Problem?

 Very tight deadlines
• Typical 12-month project rolled out in 90 days

 Development team built at the same time as application
design work

 No history of developing Web applications

 Rigid IT infrastructure and policies
• SOX and other compliance issues

• IT guys used to rule the world

 Integration with financial and other legacy systems is a
must

Advantages
 Very tight deadlines!
• We gotta do what we gotta do...

 Dev team grows at the same time as design work
proceeds
• Technology adoption driven by team member selection and viceversa

 Very few legacy issues to deal with in Web applications
• Adoption of best-of-breed technology from open-source community

 IT doesn’t do Web systems
• Technology adoption policy evolves along with design and development

 No need to reinvent the wheel for existing systems
• Financial, CRM model, etc.

Integration Through Services

SOA = Services-Oriented Architecture

Collection of services that communicate with one
another
• No dependencies on other services

• Self-contained

Messaging: mechanism for communication between
two or more services

Real-time, asynchronous, synchronous
• May occur over different transports

 HTTP, FTP, JMS, RMI, CORBA, etc.

SOA Limitations

Not all systems can be mapped as services

Workflow issues

Development team coordination

Programmer skill levels
• Do your programmers grok SOA?

System coupling
• System dependencies

• Organizational dependencies

Environment - First Iteration

Firewall

External

Device

PC

application

Web

browser thesite.com
http

Cart,

session

data

Dedicated Store
Java 6, Wicket, Tomcat,

etc.

SOAP REST
SOAP

REST

SOAP REST

Mule ESB

SOAP, REST, JMS, MQ, BPEL, JDBC, caching, in-memory

SOAP REST

REST

Microsite

Java 6

Wicket

CMS

feed

http
Internet

SOAP

REST

SOAP

REST

ERP

SOAP

REST

CMS Content
Repository

JDBC

Customer

Master

SOAP

REST

Crowd Single Sign-On

Active
Directory
(domain)

Custom

Merchandizin
g

Tools

SOAP

REST

REST

CRM

Mule ESB

Technologies Deployed

Best of Breed

Mule ESB - the backbone

Crowd Single Sign-on

GWT for front end AJAXy stuff

Wicket for Web applications

Day Communiqué / CRX for CMS

All open-source development tools

Java 5 and Java 6

How Well Did This Work?

What’s Next?

 Integration of third-party systems
• 2007 - two

• 2008 - ten or more

 International sites

Real-time device data processing

Multiple data sources
• Databases

• Financial systems

• CRM

Support for millions of devices “in the wild”

Shift Toward Consuming Resources

 Conscious decision to blur the distinction between
“services” and “data sources”

 Everything is a resource
• SOAP, REST, JMS, files

• Web apps back-end

• Computational data

 Resources are available through a well-defined
protocol

 Resources are always available through a common
transport to simplify development and deployment

What is Resource-Oriented Computing?

 All components of a system are viewed as resources to be
consumed synchronously or asynchronously

 There is no distinction between “data”, “objects” or
“services”

 There is no dependency on a programming language or
framework
• Mix and match is the reason why you want to move toward ROC

 Resources are located through URIs

 Software identifies resources through logical rather than
physical mappings

What is Resource-Oriented Computing?

 Programs map logical and physical locations through
identifiers in traditional computing models
• String resource = “I am some useful, non-trivial text.”;

 ROC defines resources through verbs and logical
identifiers
• Yes, it sounds like REST

 An identifier ALWAYS returns the CURRENT
representation of a resource

 Each logical identifier is resolved for every request
• Resource implementations can change dynamically, resource consumers

need not care about where or how a resource is implemented

Java vs. REST vs. ROC
Java REST ROC

Identifier

Fetch

Resolve

Compute

Low-level
operation

private int nX; URI URI

out.printf(“nX =
%d\n”, nX);

Method GET
URI

Protocol fetch
+ URI

Compiler,
reflection

DNS + app
server

ROC kernel or
backbone

Java Virtual
Machine

App server Endpoint and
service object

JVM, method,
initializer

HTTP method +
URI

Verb + URI pair

Defining Resources

Resources don’t exist in the context of an application
until they are requested

Resources lack typing
• Typing is relevant only to the consumer

Endpoint URIs may convert types for individual data
elements or complex data structures

URIs may encode the desired operation to perform on
the data
• protocol://servername/subsystem/operation/resource

Resource Abstractions

 The promotions resources may be generated...
• cron periodically

• On-demand

• Aggregated

 The promotions system of record is independent of the
ROC platform or the consumer

 The “verb” here is “promotions”, when combined with a
GET

 There may be two or more aggregators that produce the
resource

http://server/mycompany/promotions/product_catalogue

Resource Abstractions

http://server/mycompany/promotions/product_catalogue

Servlet

Database CMS

METHOD GET

Real-time

Pervasive

Reporting
HTTP Server

ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy: find the best components and

integrate them

ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy: find the best components and

integrate them

VENDOR LOCK-IN!!!!

ROC Architecture

 The systems are built around a backbone that provides
resources via URI

 The backbone acts as an resource container or as a
conduit between resources or resources and consumers

 URI mapping is done by the backbone

 Resource containers can exist in the same memory space
as the backbone or in a separate system

 Resource providers may be written in any programming
language

 Resource providers are stateless

ROC Architecture

 Modularity is attained through logical separation of
resources
• Resource providers as .jar, .war, or other entity

• Localized backbones

• Localized resource providers

 Logical separation may obey organizational policy,
technology policy, or both

 Implementation can be done with off-the-shelf
components in any combination that makes sense, as
long as the backbone is protocol-, language-, and
vendor-independent

ROC Architecture
 Backbone: Mule ESB

• Provides full independence from the kind of crap that vendors like to create
lock-in for

• Open-source

• Workflow, transactions, transformations, logging, routing

 Resource container: Mule ESB
• UMOs (service objects) implement business logic independently of protocol

or data formats by design

• Transactional, app server and workflow logic built-in

• UMOs are just POJOs

 Synchronization
• In-memory endpoints

ROC Architecture

 Original architecture had lots of best-of-breed software
• Tomcat

• Dedicated application/service providers

• Web servers

 ROC architecture only has two basic building blocks
• Mule acting as a resource service provider (i.e. Mule is the application

container)

• UMOs as computationally active entities

 Existing and off-the-shelf systems plug into the
architecture through SOAP, REST, JMS, etc.

 Mule allows us to define our own protocols, if necessary!

ROC Architecture

Internet

Service
Provider

(UPS, FedEx)

Mule ESB

Single Sign-On

Active

Directory

Legacy

Auth

LDAP, SOAP Mainframe / RACF

CRM
Product

Catalogue

Product
Support
Pages

Product
Support
Pages

Product
Support
Pages

HTTP, XMLJDBCSOAP

TCP pass-through

Remedy

Service Object

business logic
Web app

Web
browser

GUI
AppDedicated API

Transformer

Transformer

Transformer

JMS, SOAP, etc.

ROC Implementation

 Dedicated protocols
• vm://mycompany/subsystem/resource_name

• http://mycompany/subsystem/resource_name

 Easy to extend to handle ROC:

 Easy to implement!

verb:protocol://mycompany:port/organization/subsystem/resource_name

ROC Implementation

Mule ESB Resource Service Provider

CRM
Product

Catalogue

JDBCSOAP

Remedy

Service Object

business logic
Web app

Dedicated API JMS, SOAP, etc.

Mule ESB Backbone

JDBCSOAP Dedicated API

Transformer

Transformer

Transformer

JMS, SOAP, etc.

Consumer Consumer Consumer Consumer Consumer

ROC Implementation

 Resource providers
• SOAP API to CRM

• JMS API to transactional pieces

• Download app repository

• OpenLaszlo dynamic rich Internet application provider

 Interfaces to existing systems
• Epsilon direct mail interfaces

• FTP, sftp, other data transfer

 Computational resources for ad hoc new functionality
• MapReducers (2008, 2009)

ROC Implementation

Virtual Servers

(Xen, Zones)

MapReduce

controller

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

map(f, l)

MapReduce

reduce(f, l)

MapReduce

reduce(f, l)

bucket

bucket

bucket

bucket

bucket

bucket

T
e
rr

a
c
o

tt
a

Output

Output

assignassign

Mule ESB

assign

assign notify

notify

ROC Roll-out

Quick, turnkey roll-out

The fewer systems to maintain, the better

Use Java or JVM-hosted languages wherever
possible

 Integrate with third-party or non-Java systems
over standard or custom protocols with as quick
a turnaround as possible

EASY TO SCALE QUICKLY!!!!

ROC Roll-out

LoadBalancer

Internet

Application
Server

Tomcat 6

Application
Server

Tomcat 6

Web Services
Proxy

Apache

ESB backbone
Multiple instances of Mule 1.1.5 EE

LoadBalancer

Application
Server

Application
Server

LoadBalancer

Web
Services

Mule

Web
Services

Mule

LoadBalancer

Web
Services

Mule

Web
Services

Mule

LoadBalancer

Conclusions
 Complex systems are easier to code and maintain if implemented as

small blocks

 Small blocks can be mapped as resources that can be consumed in
a stateless fashion

 Applications can be built as an aggregation of resources

 ROC techniques improve time-to-market

 ROC techniques combined with open-source offerings can reduce
deployment costs by 70%, and ongoing maintenance by 30-40%

 Complex systems can be integrated as a combination of best-of-
breed software whether commercial, open-source, or homebrew

 ROC is the logical evolution of applied SOA

Q&A
Thanks for coming!

Eugene Ciurana
Director, Systems Infrastructure
Leap Frog Enterprises, Inc.

eugenex@leapfrog.com
pr3d4t0r @ irc://irc.freenode.net ##java, #esb, #awk, #security

This presentation is at:
http://eugeneciurana.com/MuleCon2008/ROC.pdf

