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About Eugene

 15+ years of experience building mission-critical, high-
availability systems infrastructure

 12+ years of Java work

 Open-source evangelist
• Official adoption of open-source / Linux at Wal-Mart Stores

• State-of-the-art tech for main-line of business roll-outs

 Engaged by the largest companies in the world
• Retail

• Finance

• Oil industry



What You Will Learn...

 How to develop complex apps within very tight deadlines

 Formalize integration around a resource-oriented model

 Develop event-driven apps based on existing production 
tech and services

 Turn SOA-based systems into callbacks as an evolution of 
the provider/consumer model

 Define application processing in terms of compositions 
and asynchronous sequences of resource requests



So... What is the Problem?

 Very tight deadlines
• Typical 12-month project rolled out in 90 days

 Development team built at the same time as application 
design work

 No history of developing Web applications

 Rigid IT infrastructure and policies
• SOX and other compliance issues

• IT guys used to rule the world

 Integration with financial and other legacy systems is a 
must



Advantages
 Very tight deadlines!
• We gotta do what we gotta do...

 Dev team grows at the same time as design work 
proceeds
• Technology adoption driven by team member selection and viceversa

 Very few legacy issues to deal with in Web applications
• Adoption of best-of-breed technology from open-source community

 IT doesn’t do Web systems
• Technology adoption policy evolves along with design and development

 No need to reinvent the wheel for existing systems
• Financial, CRM model, etc.



Integration Through Services

SOA = Services-Oriented Architecture

Collection of services that communicate with one 
another
• No dependencies on other services

• Self-contained

Messaging:  mechanism for communication between 
two or more services

Real-time, asynchronous, synchronous
• May occur over different transports

 HTTP, FTP, JMS, RMI, CORBA, etc.



SOA Limitations

Not all systems can be mapped as services

Workflow issues

Development team coordination

Programmer skill levels
• Do your programmers grok SOA?

System coupling
• System dependencies

• Organizational dependencies
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Technologies Deployed

Best of Breed

Mule ESB - the backbone

Crowd Single Sign-on 

GWT for front end AJAXy stuff

Wicket for Web applications

Day Communiqué / CRX for CMS

All open-source development tools

Java 5 and Java 6



How Well Did This Work?



What’s Next?

 Integration of third-party systems
• 2007 - two

• 2008 - ten or more

 International sites

Real-time device data processing

Multiple data sources
• Databases

• Financial systems

• CRM

Support for millions of devices “in the wild”



Shift Toward Consuming Resources

 Conscious decision to blur the distinction between 
“services” and “data sources”

 Everything is a resource
• SOAP, REST, JMS, files

• Web apps back-end

• Computational data

 Resources are available through a well-defined 
protocol

 Resources are always available through a common 
transport to simplify development and deployment



What is Resource-Oriented Computing?

 All components of a system are viewed as resources to be 
consumed synchronously or asynchronously

 There is no distinction between “data”, “objects” or 
“services”

 There is no dependency on a programming language or 
framework
• Mix and match is the reason why you want to move toward ROC

 Resources are located through URIs

 Software identifies resources through logical rather than 
physical mappings



What is Resource-Oriented Computing?

 Programs map logical and physical locations through 
identifiers in traditional computing models
• String  resource = “I am some useful, non-trivial text.”;

 ROC defines resources through verbs and logical 
identifiers
• Yes, it sounds like REST

 An identifier ALWAYS returns the CURRENT 
representation of a resource

 Each logical identifier is resolved for every request
• Resource implementations can change dynamically, resource consumers 

need not care about where or how a resource is implemented
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Java REST ROC

Identifier

Fetch

Resolve

Compute

Low-level 
operation

private int nX; URI URI

out.printf(“nX = 
%d\n”, nX);

Method GET 
URI

Protocol fetch 
+ URI

Compiler, 
reflection

DNS + app 
server

ROC kernel or 
backbone

Java Virtual 
Machine

App server Endpoint and 
service object

JVM, method, 
initializer

HTTP method + 
URI

Verb + URI pair



Defining Resources

Resources don’t exist in the context of an application 
until they are requested

Resources lack typing
• Typing is relevant only to the consumer

Endpoint URIs may convert types for individual data 
elements or complex data structures

URIs may encode the desired operation to perform on 
the data
• protocol://servername/subsystem/operation/resource



Resource Abstractions

 The promotions resources may be generated...
• cron periodically

• On-demand

• Aggregated

 The promotions system of record is independent of the 
ROC platform or the consumer

 The “verb” here is “promotions”, when combined with a 
GET

 There may be two or more aggregators that produce the 
resource

http://server/mycompany/promotions/product_catalogue



Resource Abstractions

http://server/mycompany/promotions/product_catalogue

Servlet

Database CMS

METHOD GET

Real-time

Pervasive

Reporting
HTTP Server



ROC Platforms

Full ROC platform by 1060 Research
• Custom distributed kernel 

GridGain, GigaSpaces
• Distributed Computing

Homebrew ROC
• Are you in the business of building one from scratch?

Off-the-shelf integration
• Best-of-breed strategy:  find the best components and 

integrate them



ROC Platforms
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VENDOR LOCK-IN!!!!



ROC Architecture

 The systems are built around a backbone that provides 
resources via URI

 The backbone acts as an resource container or as a 
conduit between resources or resources and consumers

 URI mapping is done by the backbone

 Resource containers can exist in the same memory space 
as the backbone or in a separate system

 Resource providers may be written in any programming 
language

 Resource providers are stateless



ROC Architecture

 Modularity is attained through logical separation of 
resources
• Resource providers as .jar, .war, or other entity

• Localized backbones

• Localized resource providers

 Logical separation may obey organizational policy, 
technology policy, or both

 Implementation can be done with off-the-shelf 
components in any combination that makes sense, as 
long as the backbone is protocol-, language-, and 
vendor-independent



ROC Architecture
 Backbone:  Mule ESB

• Provides full independence from the kind of crap that vendors like to create 
lock-in for

• Open-source

• Workflow, transactions, transformations, logging, routing

 Resource container:  Mule ESB
• UMOs (service objects) implement business logic independently of protocol 

or data formats by design

• Transactional, app server and workflow logic built-in

• UMOs are just POJOs

 Synchronization
• In-memory endpoints



ROC Architecture

 Original architecture had lots of best-of-breed software
• Tomcat

• Dedicated application/service providers

• Web servers

 ROC architecture only has two basic building blocks
• Mule acting as a resource service provider (i.e. Mule is the application 

container)

• UMOs as computationally active entities

 Existing and off-the-shelf systems plug into the 
architecture through SOAP, REST, JMS, etc.

 Mule allows us to define our own protocols, if necessary!



ROC Architecture
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ROC Implementation

 Dedicated protocols
• vm://mycompany/subsystem/resource_name

• http://mycompany/subsystem/resource_name

 Easy to extend to handle ROC:

 Easy to implement!

verb:protocol://mycompany:port/organization/subsystem/resource_name



ROC Implementation
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ROC Implementation

 Resource providers
• SOAP API to CRM

• JMS API to transactional pieces

• Download app repository

• OpenLaszlo dynamic rich Internet application provider

 Interfaces to existing systems
• Epsilon direct mail interfaces

• FTP, sftp, other data transfer

 Computational resources for ad hoc new functionality
• MapReducers (2008, 2009)



ROC Implementation
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ROC Roll-out

Quick, turnkey roll-out

The fewer systems to maintain, the better

Use Java or JVM-hosted languages wherever 
possible

 Integrate with third-party or non-Java systems 
over standard or custom protocols with as quick 
a turnaround as possible

EASY TO SCALE QUICKLY!!!!



ROC Roll-out
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Conclusions
 Complex systems are easier to code and maintain if implemented as 

small blocks

 Small blocks can be mapped as resources that can be consumed in 
a stateless fashion

 Applications can be built as an aggregation of resources

 ROC techniques improve time-to-market

 ROC techniques combined with open-source offerings can reduce 
deployment costs by 70%, and ongoing maintenance by 30-40%

 Complex systems can be integrated as a combination of best-of-
breed software whether commercial, open-source, or homebrew

 ROC is the logical evolution of applied SOA



Q&A
Thanks for coming!

Eugene Ciurana
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This presentation is at:
http://eugeneciurana.com/MuleCon2008/ROC.pdf


