
The Mobile Java Continuum

Eugene Ciurana
eugenex@walmart.com
Chief Architect, Advanced Technology Group
Walmart.com

Mobile Java Applications
 The elusive killer app

• Lots of mobile applications appear every year

• There is no mobile Java killer app...

 Why?

 The main reason: mobile Java applications should be
thought as part of a continuum, not as an end

 J2ME is only part of the continuum
• The application must integrate with a supporting back-end

• May have to interact with heterogeneous technologies from multiple
vendors

• A carrier or device manufacturer may need to be involved

 Games and personal productivity enhancements are the
norm

 The definition of “mobile application” continues to evolve
as vendors and carriers understand their customer’s needs
better

 Cultural differences count; different usage in:
• Japan

• Europe

• US

 Technology and business evolve in different, perhaps
conflicting directions

Mobile Java Applications

Mobile Java Applications
 So this presentation is about design, creation, and

deployment issues...
• Environments

• Technologies involved

• Caveats

 This includes:
• MIDP 2.0/CLDC 1.1

• Availability of JSR-compliant vendor APIs

• Internet access for mobile devices

• Mobile carriers and other Internet providers

 For this discussion, we assume that carriers are US
companies

Architecture: Mobile Applications

 Closed loop - requests are prepared from, and fulfilled
to, the mobile device itself
• Ringtones

• Media subscription services

 Open loop - requests are prepared from the mobile
device and fulfilled on a different device, medium, or
context
• Tickets

• Photo prints

Mobile applications: products or services delivered through
user interactions with a mobile device

Architecture: Mobile Applications

♫

What the User Experience is Like...

Provider process, fullfills

and bills the user

Architecture: Mobile Applications

 A mobile device with a common transport protocol
• Normally TCP/IP encapsulated through GPRS, BREW, etc.

• Some times this could be simple SMS

 A gateway that enables communications with the product
or service provider
• Carriers love to play this part and collect a toll

 One or more service providers
• One per application or service

 One or more fulfillment servers associated with each
provider

What is really involved in the user experience:

End-user Experience Considerations
 PDAs and phones are naturally interactive devices

 Issues:
• Small screens

• Awkward input devices

• Limited resources (primary and secondary memory, others)

• At the same time, they’re overloaded with features!
 Cameras
 Media players

 The OS offers other opportunities and limitations
• PalmOS (will it be defunct soon?)

• Symbian

• Linux

• PocketPC

• Others

End-user Experience Considerations

 The operating system and device feature set might be
proprietary or require special programming
• Example: background execution or downloads

 The OS may support it, even when the device is closed
 Device manufacturers may disable it to preserve battery life or to prevent

users from running huge connection bills

• Competitive advantage in not exposing the dedicated features (megapixel
cameras, media players) to third parties

 The Java API is sandboxed within this environment
• Even more limited access to device resources than what the device

manufacturer provides

• Technological and political restrictions also play a part
 JSRs may be too vague and don’t implement full features by design

End-user Experience Considerations
Example: Bluetooth discovery of other

devices in the PAN
Example: Manipulating photos in a

megapixel camera phone
Requires: JSR-82, Bluetooth / OBEX API

package
Requires: JSR-75, file connection API

package
Desired functions: device discovery,

service discovery, offer service
registration

Desired functions: root file system
discovery, list files per file system,
manipulate JPEG images

Reality: most J2ME/JSR-82 compliant
devices do not support these features
unless the JVM is running and the
device is in an active state; cannot fork
the JVM as a background process

Reality: file system support is not
uniform across J2ME/JSR-75 devices -
what works in some doesn’t in others;
the MIDP specification defines only
PNG support as required - JPEG or
other format manipulations require
native device API

Target devices must be throughly tested and generally demand the carrier’s or device
manufacturer’s assistance or approval.

Application Design

 Enterprise applications resemble closed-loop commercial
services
• Data collection/validation applications

• Standardized development toolset

• Standardized deployment platform

• They are easier to design, develop, test, and deploy because the options
are limited

 Commercial applications
• Open- or closed-loop

• Usually must find a partner (device manufacturer, carrier, or both)

• Assume heterogeneous devices and target the lowest common
denominator

Application Development Life Cycle

 Similar to any other app. dev. life cycle unless...

 ...you involve a partner.

 If the partner is a device manufacturer, life is a lot
simpler because NDAs lubricate the process and give
you access to APIs, features, etc.

 If the partner is a carrier, keep in mind that they will
want to collect a toll for every operation performed
through the device
• Who bills the end-user?

• What percentage of the bill goes to you?

Sale

Distrib

Cert.

QA

Code

Dsgn

Req's

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Application Development Life Cycle

Commercial application, sold through retail channels

Holiday season

Application Development Life Cycle
Start

Requirements

gathering

Design and

schedule OK

Prepare design

documents and

implementation

schedule

Develop the

application

QA,

debugging

Deploy the

application

Performance

SLA

End

Appy partner

design

considerations

Meets partner

product

schedule

1

yes

yes

End

1

Partner tests

with target

phone models if

functionality is

tied to hardware

profile

Meets partner

criteria

yes

yes

yes

End

Involving a carrier or

device

manufacturer adds

complexity

to the design phase:

* Technical requirements

* Business considerations

* Politics

Product cycles are 6 to 8

months long after the

manufacturer delivers the first

production prototypes.

Depending on the device or

service, the partner will test

with every handset targeted

by the marketing plan. Critical

if the application is tied to a

hardware profile (i.e. media

player, camera, other).

Application Delivery

 Delivery is simple for enterprise applications

 Uses standard protocols and mechanisms
• application.jar - Java classes and resources

• application.jad - JAr Descriptor file - metadata (vendor, size, etc.)

Network

application.jar
application.jad

HTTP

Application Delivery

 Commercial applications may have multiple delivery
channels

Network

Factory

Store, kiosk, retailer bootstrap
and service sign-up

Beaming

Computer base-station
synchronization

Business considerations
may apply, regardless of
technology base.

Application Support

 Applications must be certified on all intended target
platforms
• Unless you want to have a headache

 Support the application as one-time installation
• Handset and carriers like this idea - forces upgrades to gain access to new

functionality

• Legacy - how long will you support it?

 Incremental upgrades, bug fixes
• Helps maintain the installed based up-to-date

• QA and certification burden: regression testing becomes a problem
 Whose?

• Device manufacturer’s, carrier’s, app developer?

Snacking Behavior

 User-friendliness in UI - make it easy for the user to
accomplish the task in as few steps as possible

 Mobile devices are “impulse devices”
• I want it now, I get it now

• Grab the end-user quickly if your application is a service

 End-users show “snacking behavior”
• 3G video/media playback ~= 3 minutes or less

• Photos: I’m here and can take a photo!

• Ringtones: fetch and install in a single SMS interaction

• Music: for practical purposes, the iPod ROKR and similar devices are a bust
 They allow music deployment only through a docking station

A Real-Life Application: Photo Prints

 Camera-enabled mobile devices provide convenience
• Many have megapixel capabilities

 How do you print the photos?
• Download the images to a computer, then order

• Write the photos to an SD card and print from an in-store kiosk

 Imagine a world where you can take your photos and
order prints from your phone
• Convenience

• Snacking behavior

 How would you implement this?

A Real-Life Application: Photo Prints
Great moment!

Megapixel phone

Group photos to print

in a folder

1

2

3

Network

Telco/Mobile carrier4

5

The photos are sent

to the local store for

printing

The customer picks

them up when ready

6

A Real-Life Application: Photo Prints
Photo Processing Java Application Flow

PhotoPak

Add photos

View last photo

View last-1

All photos

shown

Submit

PhotoPak

Identify location
Select payment

method

Confirm delivery

method

Pick photos up

Pop-up
Envelope full!

Pop-up
Print envelope?

Phone no.?

Zip code?

Arbitrary number
of prints (10, 24)

No thumbnails!

Carrier?

Credit card?

In-store?

In-store?

Snacking

behavior

Real-Life Application Considerations

 Define a default fulfillment location?
• Based on user profile

• Based on phone number

• Based on geographical location

 Is it necessary to tie this workflow with other applications?
• When transferring the package for processing, update a user’s web site account

(i.e. web photo site, retailer web site, tickets, what?)

 How are end-user accounts created or linked?

 Will the carrier allow third parties devices to access the
application and service?
• Politics

• Support

Real-Life Java Application Considerations
 Using J2ME provides the widest possible audience

• Carriers may not like this

• Handset issues

 Allow the application to be installed in third-party
phones?
• Who installs the application? In-store? Over the air?

 User interface issues
• Must code to the lowest UI common denominator to support the widest

range of platforms

 No accurate way to determine device capabilities from
J2ME

Building the Application

 Development environment
• J2ME - Wireless Toolkit 2.1 or later

• Java 1.4.2 or Java 5

• Third-party development tools (Netbeans, Eclipse, etc.)

 Testing environment
• At least one device in the target category

 Additional support:
• Devices must support CLDC 1.1 and MIDP 2.0

 Connected Limited Device Configuration
 Mobile Information Device Profile

• JSR-75: Access to the device’s file system
 Also provides access to PIM functionality
 Support for multiple root file systems in the device

Ugh!
Only works with Windows

and Linux!

Building the Application

Install WTK

Create a new

project

MIDlet

Edit the source

files

(.java, properties)

Build the

application

Run the

application in

WTK emulators

Begin

Install .jars for

JSR support

1

1

Deploy distribution

package to test

servers O
b
fu

s
c
a
te

 p
a
c
k
a
g
e

fo
r

b
e
tt
e
r

d
is

tr
ib

u
ti
o
n

fi
le

 s
iz

e
?

application.jar

application.jad

Install application in

target devices

Create distribution

package

Building the Application (J2ME Limitations)
 The user wants to see the contents of the PhotoPak

as thumbnails, just like in the phone’s photo browser

 Example: J2ME/JSR-75 limitations may prevent
this!
• Only graphics format supported: PNG

• No raster manipulation, no resizing

• Limited or uneven access to file system

 The user may only be able to see one photo at a
time!
• File system issue: limit the number of target devices

• Graphics: use a 3rd-party graphics manipulation library

Building the Application (J2ME Limitations)
 The user wants to see the contents of the

PhotoPak as thumbnails, just like in the phone’s
photo browser

 Example: J2ME/JSR-75 limitations may
prevent this!
• Only graphics format supported: PNG

• No raster manipulation, no resizing

• Limited or uneven access to file system

 The user may only be able to see one photo at
a time!
• File system issue: limit the number of target devices

• Graphics: use a 3rd-party graphics manipulation
library

 Big Issue: No JNI operations - J2ME is
completely sandboxed!

• Complete reliance on JSRs and manufacturers’ whims

The J2ME API
limitations may
kill the project!

Beware of
these limitations
and plan ahead

Building the Application (Constraints)

Host Device

KVM Virtual Machine

Configuration

Profile

O
th

e
r

J
S

R
s

J
S

R
-7

5

J
S

R
-1

3
5

J
S

R
-1

2
0

Application

Operating System

Applications are constrained by the J2ME configuration, the
available profile, and the installed JSR-compliant profiles; the

J2ME stack is constrained by the operating system.

Building the Application: JSRs

JSR Description WTK Real world
75 Access to PIM and device file system data Yes Yes; uneven support by

manufacturers

82 Bluetooth integration Yes Yes

120 Wireless messaging API Yes Some times; late 2006
135 Mobile media API Yes Yes; pervasive late 2006
172 Web services API Yes Rarely

184 Interactive 3D API Yes 2007
185 Wireless messaging API Yes 2007

Most of these APIs (including MIDP and CLDC) have existed since 2001 or
so. In real-life applications, the biggest issue is that they aren’t evenly
supported by manufacturers and some of the JSRs seem to have been
written vaguely on purpose to protect vendors’ feature sets.

Manufacturer and Carrier Considerations

 70% of all mobile devices are sold by a carrier or
franchise
• Device subsidies

 Once hooked up with a carrier, it’s unlikely that you’ll
do business with a different carrier
• Picking the right carrier is an art

• Lots of back-and-forth negotiations

 Network infrastructure support?
• CDMA: Code Division Multiple Acces

• BREW: Qualcomm’s “Son of CDMA”

• GPRS: General Packet Radio Service

It’s a
business model, not only

a technology!

Application Integration and Deployment

 The manufacturers and carriers certify the application

 The user experience is defined in terms of the device:
• Post a request

• Receive primary acknowledgment from carrier

• Upload data/photos/whatever

• Carrier uses a proxy - best way to re-sync if something goes wrong

• Carrier notifies service provider

• Service provider fetches data and fulfills service

• Service provider notifies carrier OR customer that order is fulfilled

• User receives SMS notification

Application Integration End-to-End

Mobile device

Carrier's proxy

aggregates order

data

Order processing

system

J2EE compliant

enterprise server

Carrier's

transient

photo

repository

Fulfillment server

Photo processing

server

Photos printed at

the remote

location

XML order

XML/JSON order

Photos

Order database

JMS/MQ series

Order fulfillment notification

Permanent photo

storage

HTTP pull from remote server

SOAP/HTTP

Photos expire after

a pre-defined period

or upon successful

pull from processing server

.Net?

Other technology?

EDI?

Application States
 Many intermediate systems

involved in the transaction

 Lots of asynchronous
operations
• Order is placed after the photos are

uploaded to the carrier’s intermediate
server

 Lots of wait states

 Reduce the wait at the mobile
device as much as possible
• Don’t hog the line

• Transfer the minimum amount of data
to proxy

Carrier Order
processing

Photo
Processor

Customer
places
order

Order init'd

Commit order

Order
committed

Customer
order

notification

Init order

Submit and
confirm order
to database

and fulfillment
systems

U
p
lo

a
d
 p

h
o
to

s
 f
ro

m
 P

a
rt

n
e
r

logon

Logon OK

Order upload

Upload OK

Order
notification

Place order

End

End

End

Q&A
Eugene Ciurana
eugenex@walmart.com
Chief Architect, Advanced Technology Group
Walmart.com

